

для построения инфраструктуры высоконагруженных корпоративных и государственных информационных систем

скала р

ЛЕТ серийного выпуска

скала р

680

комплексов в промышленной эксплуатации 10

ТЫС. + вычислительных узлов

Продуктовые направления Скала^р

решения для высоконагруженных корпоративных и государственных систем

Динамическая инфраструктура

Машины динамической инфраструктуры Скала^р МДИ

на основе решений BASIS для создания динамической конвергентной и гиперконвергентной инфраструктуры ЦОД и виртуальных рабочих мест пользователей

Высокопроизводительные базы данных

Машины баз данных Скала р МБД

на основе решений Postgres Pro для замены Oracle Exadata в высоконагруженных системах с обеспечением высокой доступности и сохранности критически важных данных

Инфраструктура для ИИ

Машина искусственного интеллекта Скала^р

на основе оптимизированного программноаппаратного стека для максимальной производительности при работе с моделями ИИ

Управление большими данными

Машины больших данных Скала^р МБД.8

на основе решений ARENADATA и PICODATA для создания инфраструктуры хранения, преобразования, аналитической, статистической обработки данных, а также распределенных вычислений

Интеллектуальное хранение данных

Машины хранения данных Скала^р МХД

на основе технологии объектного хранения S3 для геораспределенных катастрофоустойчивых систем с сотнями миллионов объектов различного типа и обеспечения быстрого доступа к ним

- Использование опыта технологических лидеров (гиперскейлеров)
- Использование самых зрелых и перспективных технологий в кооперации с технологическими лидерами российского рынка в каждом из сегментов

Модульная платформа Скала р

Использование опыта технологических лидеров — гиперскейлеров

Единый принцип модульной компоновки и платформенный подход

Единая облачная система управления сервисами

laaS

PaaS

DBaaS

Программная платформа Скала^р для управления ресурсами и эксплуатацией -

Разделение ресурсов

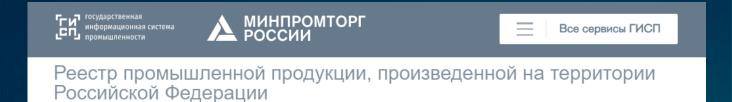
Мультитенантность

Автоматизация

Программная платформа Скала р

Объединения различных доменов управления в единую функциональную графовую CMDB Комплексное решение для эксплуатации инфраструктуры уровня ЦОД

- Единая точка обзора состояния контура
- Обозримость и удобство управления ЦОД
- Цифровой двойник инфраструктуры
- Контроль изменений быстроменяющихся топологий
- Моделирование изменений в инфраструктуре
- Высокая степень автоматизации
- Построение Al-Copilot для управления ЦОД


ПАК Скала р в Реестрах РФ

Машины

Модули

Компоненты

Машины

Модули

Программное обеспечение

Машины

Модули

Программное обеспечение

Соответствуют критериям доверенного ПАК

- Технологическая независимость
- Информационная безопасность
- Функциональная устойчивость

Импортозамещение: сложность выбора Отсутствие технологического лидерства

Виртуализация

vmware

Вычислительная

инфраструктура

Проблемы отсутствия ИТ-лидеров на российском рынке

- Отсутствие информации и практического подтверждения совместимости продуктов
- Время и ресурсы для подтверждения соответствия заявленной функциональности

- Проблема совместимости с продуктами из разных классов
- Размывание понятия «лидер»: в каждом сегменте существуют десятки на первый взгляд равноценных продуктов

Независимость: варианты реализации

Покомпонентное замещение

- Время на изучение вариантов, тестирование и выбор.
- Лавина взаимосвязанных проектов по внедрению
- Сложность синхронизации дорожных карт развития
- Рост сроков внедрения и рисков на стыках

Создание целевой доверенной ИТ-инфраструктуры

- Последовательный перевод систем на целевую доверенную ИТ-инфраструктуру
- Снижение нагрузки с текущей инфраструктуры и необходимости ее масштабирования
- Сокращение сроков внедрения и снижение рисков

Почему ПАК Скала р?

- Гарантированно совместимые компоненты
- Отказоустойчивость на уровне архитектуры
- Оптимизация производительности
- Ответственность одного производителя за функционал и показатели назначения
- Решенные вопросы интеграции, эксплуатации, мониторинга, обеспечения ИБ, резервного копирования
- Поддержка и сервис из одного окна
- Серийность и преемственность
- Управляемая дорожная карта развития

Конкурентные преимущества оптимизированных решений Скала^р

Производительность

чем решения, использующие сопоставимые аппаратные средства за счет оптимизации ввода-вывода и интерконнекта и за счет разгрузки ЦПУ

чем решения в виртуальной среде, использующие сопоставимые аппаратные средства за счет снижения латентности

для систем с большим количеством сессий за счет использования специализированных пулеров и балансировщиков

RPO/RTO

время выполнения резервного копирования и восстановления за счет специализированного встроенного модуля резервного копирования

время полного восстановления узла в случае отказа за счет использования встроенной системы развертывания и цифрового двойника системы

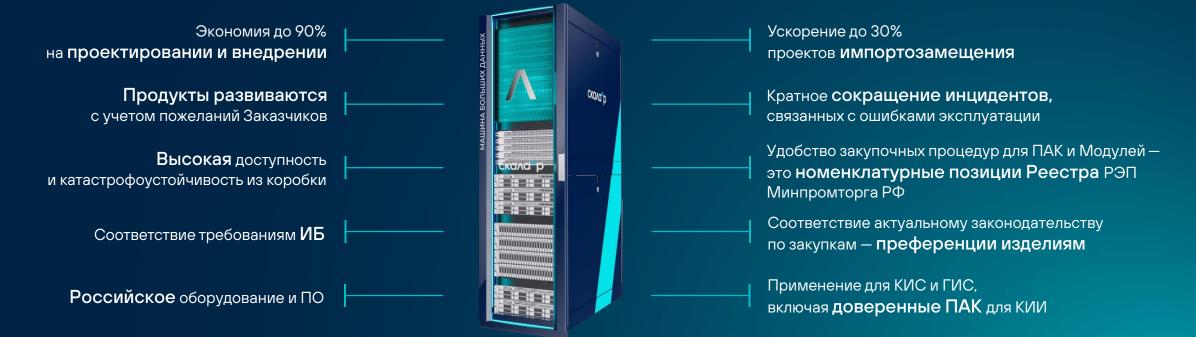
Доступность

Кратное сокращение инцидентов

связанных с ошибками эксплуатации и существенное увеличение доступности за счет использования специализированной системы управления ресурсами

ПАК — Машины Скала[^]р — преимущества перед самостоятельными проектами

Высокая отказоустойчивость


За счет специализированной модульной и кластерной архитектуры решений

Высокая производительность

Встречная оптимизация и устранение узких мест по всему стеку применимых технологий

Премиальный сервис

Гарантированно работоспособное решение

Прямое взаимодействие с технологическими партнерами по развитию необходимого Заказчикам функционала

ПАК — Программно-аппаратный комплекс и модули платформы — включены в Единый реестр российской радиоэлектронной продукции и реестр Минцифры

Машины больших данных Скала^р МБД.8

Машины больших данных Скала^р МБД.8

высокопроизводительные хранилища и витрины данных на базе продуктов Arenadata и Picodata

Скала $^{\circ}$ р МБД.Г \leftarrow Arenadata DB (ADB)

СУБД массивно-параллельной обработки (на основе Greenplum)

Скала[^]р МБД.Т ← Picodata

Распределенные вычисления в оперативной памяти (на основе Picodata)

Скала[^]р МБД.С ← Arenadata Streaming (ADS)

Потоковая обработка данных в реальном времени (на основе Kafka и NiFi)

Скала $^$ р МБД.Х \leftarrow Arenadata Hadoop (ADH)

Машина для обработки больших данных средствами экосистемы Hadoop

Скала[^]р МБД.КХ ← Arenadata QuickMarts (ADQM)

Машина для быстрых аналитических витрин с реляционным доступом (на основе ClickHouse)

Ожидания клиентов

Государственные организации

- Пополнение информации об объектах госорганов
- Подготовка данных для государственной отчетности
- Сбор статистической информации для прогнозирования
- Выявление скрытых зависимостей и противодействие мошенничеству
- Сбор информации с региональных и местных уровней

Банковский сектор

- Анализ доходов и расходов клиентов
- Сегментирование клиентской базы
- Анализ рисков и предотвращение мошенничества
- Анализ отзывов клиентов для повышения лояльности
- Предиктивная аналитика

Ритейл и e-commerce

- Исследование потребительской корзины
- Анализ скорости покупки товаров и пополнение склада
- Исследование причин простоя торгового оборудования и касс
- Исследование товарных предпочтений различных групп клиентов
- Точность предзаказа и автозаказа

Телеком

- Выявление аудиторий клиентов для маркетинговых компаний
- Оптимизация ценового предложения
- Предотвращение риска мошенничества
- Превентивный мониторингтрафика и выявление проблем
- Получение данных о поведении сетевого оборудования

Отвечая потребностям бизнеса

Возможная интеграция с любыми источниками информации

- OLTP, ERP, CRM
- Документы и почтовые сообщения
- Журналы веб-серверов, потоки посещений
- Данные социальных сетей
- Журналы промышленных систем
- Данные сенсоров и датчиков

Выполнение бизнес-задач на неограниченном объеме данных

- Анализ больших данных которые постоянно пребывают измеряемые в Тбайт
- Работа с данными типа «ключ значение»
- Преобразование неструктурированных и частично структурированных данных в структурированную форму

Гарантия скорости обработки данных

- Использование параллельной обработки
- Распределенная обработка
- Инвариантная топология кластера для разных классов рабочих нагрузок

Горизонтальное масштабирование

- Рост системы в зависимости от потребностей бизнеса
- Расширение возможностей существующих аналитических систем
- Предельная загрузка оборудования
- Простое наращивание вычислительной мощности и полезной ёмкости системы

Управление Машинами больших данных Скала^р 🔨

Объединение лучшего оборудования и ПО для построения КХД

Производительность платформы:

от 1 000 000

запросов в секунду

Максимальная ёмкость:

> 100 Пбайт

Состав Машин больших данных Скала р МБД.8

Основной функционал

Подсистема обеспечения базовых сервисов	Управление эксплуатацией:Автоматизация процедур обслуживанияМониторинг компонентов Машины	до 50% Экономия на эксплуатации
Сетевая подсистема	 Объединение всех компонентов Обеспечение высокоскоростного взаимодействия Создание отказоустойчивой сети 	до 100 Гбит/с на порт
Основная, уникальная для каждой Машины функциональная подсистема	Высокопроизводительные кластерыПараллельные вычисленияОтказоустойчивая архитектура	от 2 вычислительных узлов
	0	
Подсистема управления	Оркестрация запросовСервисные функцииКонтроль и управление кластером	Интеллектуальное управление

Дополнительный функционал

Дополнительные подсистемы с уникальными возможностями, которые можно совмещать с основными

- Хранение резервных копий
- Преобразование данных
- Управление данными
- Управление доступами к данным

Набор специализированного функционала: резервное копирование, ETL, Data Governance, безопасность и т.п.

Машина больших данных Скала^р МБД.С

Машина больших данных Скала р МБД.С для потоковой обработки данных

с применением продукта Arenadata Streaming (ADS) на основе Kafka и NiFi

Сценарии применения

- Проектирование потоков данных
- Потоковая обработка данных и преобразование данных (ETL)
- Обработка событий в реальном времени
- Транспортировка данных из различных источников
- Построение интеграционной шины по модели издатель-подписчик
- Сбор и интеграция разнородных данных

Особенности

- Прием данных в режиме реального времени
- Инструменты для анализа данных
- Масштабируемая распределенная архитектура

Замещаемые технологии

Rabbit MQ, MuleSoft Anypoint, Google Cloud Pub / Sub, IBM MQ, Azure Event Hubs, Amazon Kinesis Data Streams

Рекомендовано при требуемой пропускной способности

1-2 млн

сообщений в секунду на брокер

Скорость внутреннего взаимодействия

100 Гбит/с

высочайшая производительность шины данных

Функциональная специфика Машины Скала^р МБД.С

-Требования к сценарию работы

- Объём хранения данных в очереди от 4 Тбайт
- Синхронизация данных в ERP-, CRM-системах с изменениями данных во внутренних базах, организация асинхронного взаимодействия между системами и приложениями
- Для потоковой обработки данных применение NiFi, для обработки данных в очередях совместно Kafka и NiFi

Особенности ввода-вывода

- Потоковая обработка данных миллионы операций в секунду с последующим хранением результатов
- Аналитическая обработка и подготовка данных в потоке с реляционными данными (обогащение)
- Хранение существенных объемов сообщений для широкого круга индустрий

Особенности вычислений

- Встроенные средства ETL для оперативной обработки данных из различных источников
- Параллельная обработка потоков данных при помощи генерации код запросов и косвенных вызовов

-Ключевые особенности и характеристики

- Линейная масштабируемость и автоматическое переключение на реплики записей при отказе узла в кластере
- Высокая доступность системы с учетом требуемого коэффициента репликации и распределения

- Разбиение очередей на разделы сообщения хранятся в упорядоченных разделах, являющихся атомом параллелизма
- Поддержка структурированных запросов в Kafka SQL

Сценарий: Потоковая обработка сотен тысяч сообщений в секунду

- Высочайшая скорость обработки сообщений за счет кластеризации
- Сбор данных с производственных комплексов, систем аудита параметров, контроля состояния, транспортных средств
- Хранение истории полученных сообщений.
- Трансформация данных
- Передача данных в целевые системы
- Отказоустойчивая кластерная архитектура с мониторингом состояния
- Масштабируемость под любой поток данных
- Мощности, необходимые для хранения истории сообщений

Производительность Машины Скала р МБД.С

Максимальная скорость взаимодействия компонентов

Выделенный интерконнект

- Высокоскоростная сеть интерконнекта ускоряет распределение заданий, ETL и ELT
- Параллельная обработка запросов на узлах приводит к суммированию мощностей всех узлов
- Создание параллельной синхронной копии не влияет на выполнение задания
- Все серверы взаимодействуют между собой с одинаковой скоростью

Спрогнозированная нагрузка

 Производительность можно выбирать, подбирая нужное количество Модулей вычисления и хранения

Программный RAID

- Производительнее аппаратного RAID-контроллера
- Управление процессорными потоками
- Минимальная просадка производительности в режиме восстановления

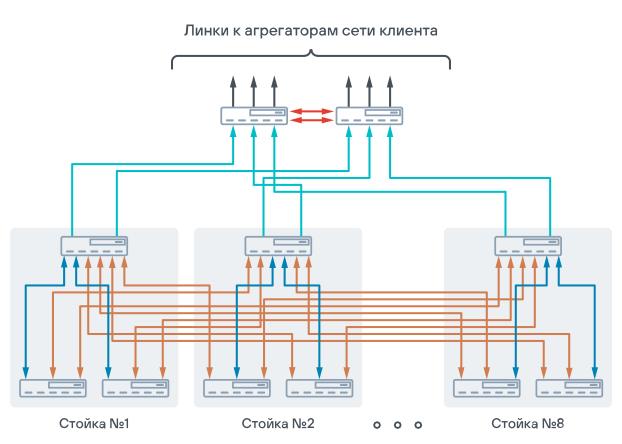
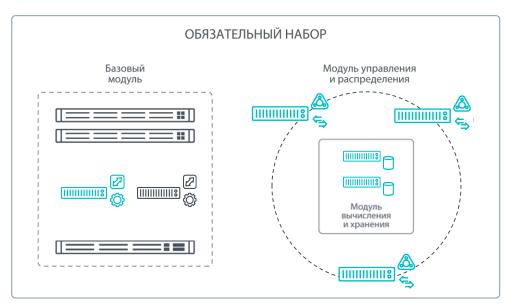


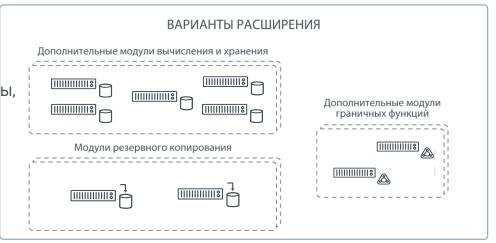
Схема внутренних соединений Leaf-Spine с увеличением скорости при горизонтальном масштабировании

Доступность данных — синхронная копия БД

Отказоустойчивая архитектура

Кластеры Модуля вычисления и хранения

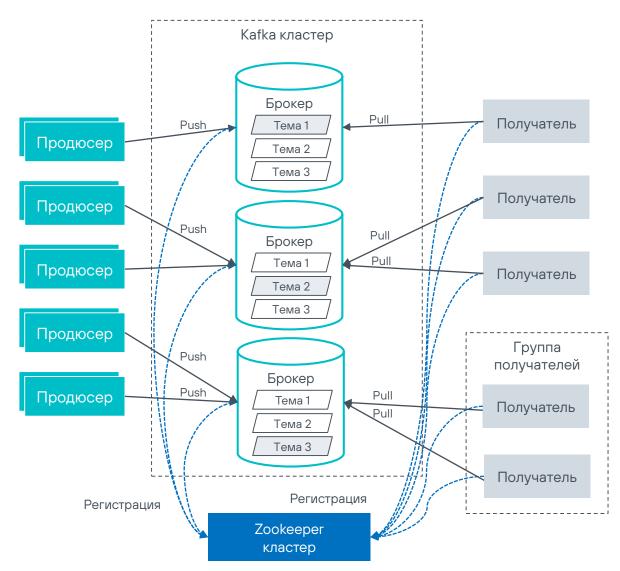

- Отказоустойчивость реализована на уровне данных Kafka брокеров минимум 2 сервера для хранения информации
- Дополнительные модули повышают производительность и надежность системы


Контроль за репликацией выполняется Zookeeper

- Кластер из 3 серверов в Модуле управления и распределения
- Состояние брокеров, Квоты, узлы
- Реплики, Смещения, Реестры

Особенности репликации

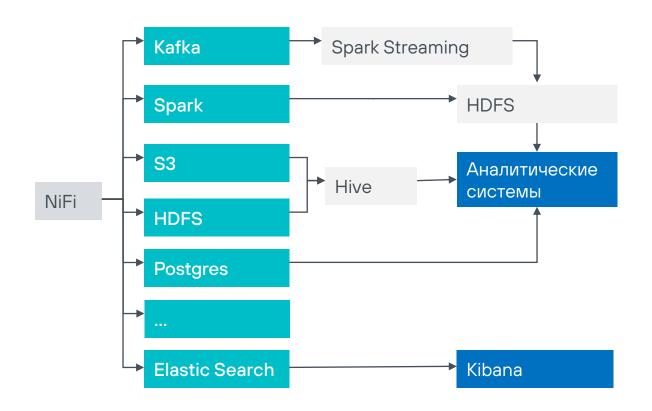
- Данные сгруппированы по темам (topics), которые разбиваются на разделы, у каждого из которых могут быть несколько копий (реплик)
- Реплики хранятся на брокерах, каждый из которых может хранить несколько тысяч реплик



Расширение объема обработки данных

Применение кластеров

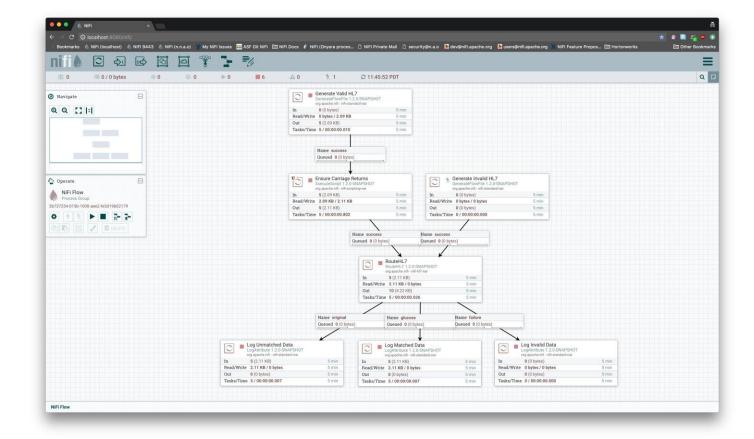
- Обеспечивает отказоустойчивость сервиса
- Снимает ограничение ресурсов
- Расширяет объем хранения сообщений
- Распараллеливает чтение и масштабирования очереди
- Обеспечивает разделение нагрузок на несколько кластеров
- Отвечает требованиям по разделению доступа
- Обеспечивает репликацию
 - Ведущие реплики, через которые выполняются клиентские запросы
 - Ведомые реплики, которые копируют сообщения из ведущей реплики, тем самым поддерживая актуальное состояние по сравнению с ней


Гибкость в выборе способов работы с данными

Архитектура

Процессоры для NiFi

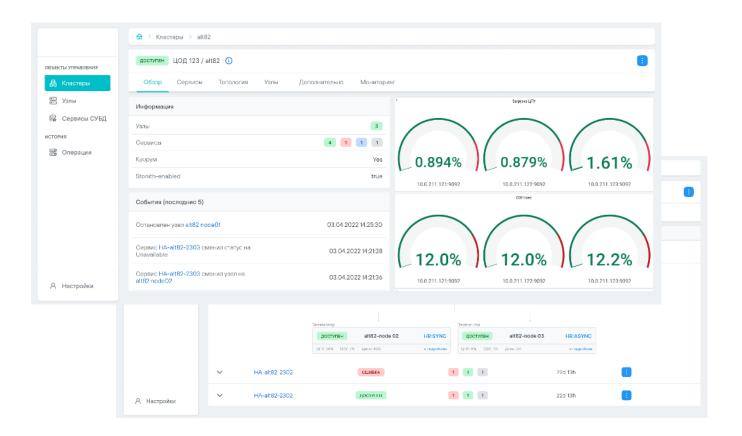
- Процессоры извлечения атрибутов
- Процессоры доступа к базе данных
- Процессоры приема данных
- Процессоры преобразования данных
- НТТР-процессоры
- Процессоры маршрутизации и посредничества
- Отправка процессоров данных
- Процессоры разделения и агрегации
- Процессоры системного взаимодействия
- Процессоры S3



Простая работа с интерфейсом для интеграций

NiFi

- Удобный веб-интерфейс
- Функция перетаскивания при помощи мыши
- Удобство редактирования свойств элементов
- Удобство настроек процессоров элементов
- Масштабирование объёмных схем


Управляемость

Система управления жизненным циклом Скала^р Геном

Данный программный продукт обеспечивает:

- Контроль развертывания компонентов Машины
- Ведение электронного паспорта Машины
- Отслеживание состояния узлов
- Отслеживание конфигурации программноаппаратного состава Машины
- Снижение влияния человеческого фактора сокращение рисков, связанных с ошибками эксплуатирующего персонала

Блок вычисления и хранения Общий вид

Λ

Назначение:

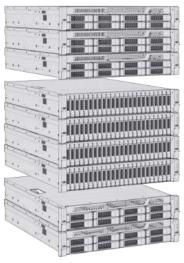
- Хранение данных очередей
- Быстрое вычисление запросов

Модификации составляющих Модулей:

- По объему хранения и вычислений
- По производительности
- По предназначению: для продуктивной среды или для разработки

Расположение:

- В базовом блоке
- В стойках расширения
- В Модулях расширения коммутации



Блок вычисления и хранения

Применимость и особенности

Применимость:

- По параметрам модулей данного Блока определяется производительность и объемы хранения Скала^р МБД.С
- Расширение производительного объема и повышение производительности всей системы в 50% случаев происходит за счет дополнения Модулей вычисления и хранения по 3 узла

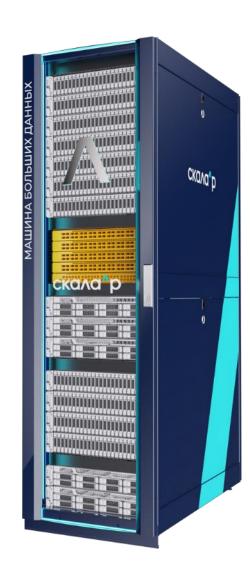
Особенности:

- Объем данных (размер очереди, словарей и т.д.), в Тбайт набираем Модулями
 - Модуль ОД обработки данных тип D тип 1 (2 узла прод.)
 - Модуль ВХ вычисления и хранения тип Т тип 1 (3 узла прод.)
 - Модуль ОД обработки данных тип D тип 2 (2 узла тест)
 - Модуль ВХ вычисления и хранения тип Т тип 2 (3 узла тест)
 - Самый высоконагруженный Блок в Машинах Скала^р МБД.С
- Хранение строится на SAS SSD или NVMe SSD
- Количество процессорных ядер от 80 на модуль
- Оперативная память от 384 Гбайт до 512 Гбайт на модуль в зависимости от исполнения

Блок коммутации и агрегации Общий вид

Λ

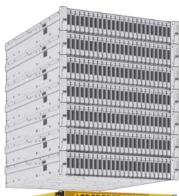
Назначение:

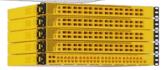

- Внутренний интерконнект на высокой скорости
- Агрегация по схеме Leaf-Spine или «звезда»
- Выделенная сеть для управления и мониторинга

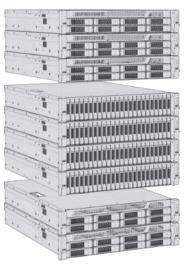
Модификации составляющих Модулей:

- Модуль агрегации в служит для соединения в одну сеть узлов коммутации и связи с инфраструктурой
- Модуль коммутации размешается в каждой активной стойке

Расположение:


- В Базовом блоке в виде набора узлов
- В Модулях расширения коммутации




Блок коммутации и агрегации

Применимость и особенности

Применимость:

- Соединение с инфраструктурой клиента
- Обеспечение скоростной внутренней коммутации
- Обеспечение отдельной сети для резервного копирования
- Обеспечение сетей для мониторинга и управления

Особенности:

- От трех до семи коммутаторов на стойку
- До трех параллельно действующих сетей для обеспечения отказоустойчивости

Блок управления и распределения Общий вид

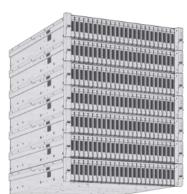
Λ

Назначение:

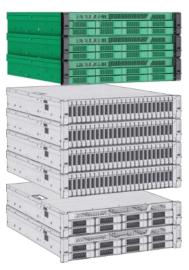
- Координация данных об очередях, разделах, потребителях
- Поддержание отказоустойчивого кластера координатора

Модификации Модулей:

- Трехузловой кластер стандартное решение
- Семиузловой кластер решение для поддержания копий в резервном ЦОД с удаленным арбитром


Расположение:

В 99% случаев в Базовом модуле / модулях



Блок управления и распределения

Применимость и особенности

Применимость:

- Является основой для поддержания репликации данных
- Может быть расширен резервными узлами

Особенности:

- Зафиксированы оптимальные конфигурации
- В отдельных случаях может использовать внешние относительно
 Модуля базы данных для хранения метаинформации

Блок мониторинга и регистрации Общий вид

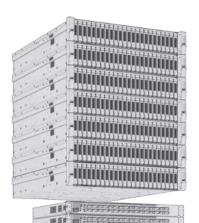
Λ

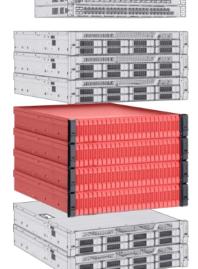
Назначение:

- Управление Машиной от бизнес-модели до конкретных аппаратных компонентов
- Управление развертыванием, обновлением, жизненным циклом Машины

Модификации составляющих Модулей:

- Один узел абсолютный минимум без резервирования
- Два узла взаимное резервирование с ручным переключением
- Четыре узла стандартная отказоустойчивость высокой доступности с распределенным хранилищем


Расположение:


В 99% случаев в Базовом модуле

Блок мониторинга и регистрации

Применимость и особенности

Применимость:

- Присутствует в любой Машине больших данных Скала^р
- Обязательно содержит ПО:
 - Скала^р Геном
 - Скала^р Визион
 - Arenadata Cluster Manager
 - Arenadata Enterprise Tools
 - Arenadata Monitoring

Особенности:

- Всегда в виртуальной среде
- Система управления виртуализацией входит в комплект

Блок резервного копирования Общий вид

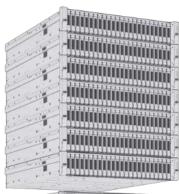
Назначение:

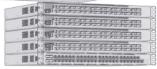
- Хранение резервных копий БД
- Хранение настроек и метаданных
- Пространство для ETL

Модификации составляющих Модулей:

- 2 размера базы
 - Неделя + инкременты
- 3 размера базы
 - Неделя + инкременты + текущий
- 4 размера базы
 - 2 недели + неделя + инкременты + текущий

Расположение:


В стойках Машины равномерно



Блок резервного копирования

Применимость:

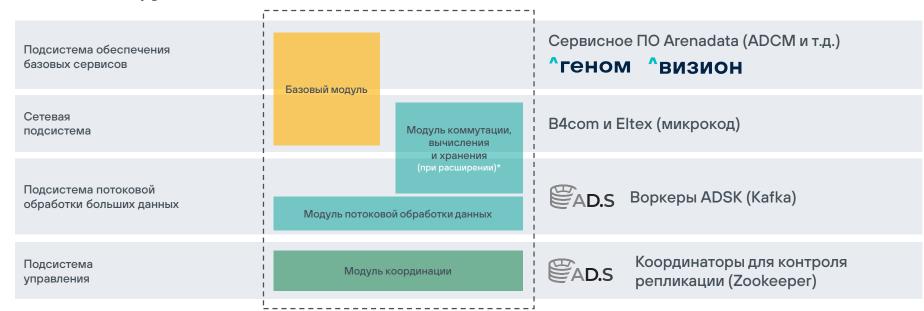
- Элемент в соответствии с требованием к надежности (опционально)
- Возможно совмещение платформ для формирования теплого резерва (асинхронное копирование)
- Возможно использование для очень холодных данных

Особенности:

- При заказе резервных копий может быть от 4-х до 11-и (по ITIL)
- Модуль резервного копирования РК содержит 140 Тбайт
- Дисковое хранение
- RAID50
- Возможно подключение в выделенной параллельной сети
- Возможно иерархическое хранение (в разработке)

Модульность Машины Скала р МБД.С

Основной	Базовый комплект		Комплект модулей расширения	
функционал	і Модули і	Узлы	Модули	Узлы
Подсистема обеспечения базовых сервисов		2х вычислительный узел мониторинга и регистрации		
Сетевая подсистема	Базовый модуль 	Для управления, Внутреннего взаимодействия, внешнего доступа и для задач агрегации	Модуль коммутации, вычисления и хранения	Для управления, Сетевые узлы внутреннего взаимодействия, внешнего доступа и для задач агрегации
Подсистема потоковой обработки больших данных	Модуль потоковой обработки данных	Вычислительные узлы потоковой обработки данных	Модуль потоковой обработки данных	1-3х Вычислительные узлы потоковой обработки данных Вычислительные узлы потоковой обработки данных
Подсистема управления	Модуль координации	3х Вычислительные узлы координации (Zookeeper)		

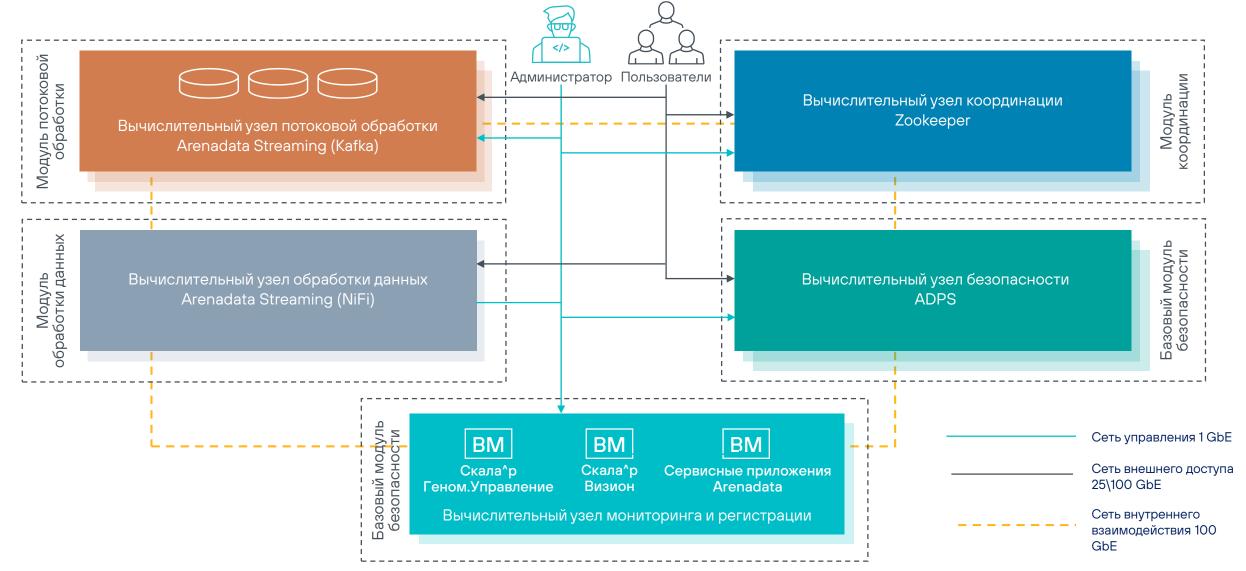

Дополнительный функционал

Подсистема резервного копирования	Модуль резервного копирования	Вычислительный узел резервного копирования + дисковая полка	Подсистема управления доступом	Базовый модуль безопасности	Вычислительные узлы безопасности
Подсистема управления данными	Модуль управления данными	Вычислительные узлы для управления данными	Подсистема обработки данных	Модуль обработки данных	Вычислительные узлы обработки данных
Подсистема преобразования данных	Модуль преобразования данных	Вычислительные узлы для преобразования данных			

ПО в составе Машины Скала^р МБД.С

Λ

Основной функционал


Дополнительные функции

Подсистема резервного копирования	Модуль резервного копирования	NFS хранилище
Подсистема управления данными	Модуль управления данными	Arenadata Catalog
Подсистема преобразования данных	Модуль преобразования данных	ПО для управления ETL-процессами
Подсистема управления доступом	Базовый модуль безопасности	ADPS
Подсистема обработки данных	Модуль обработки данных	Воркеры ADSN (NiFi)

Общая архитектура Машины Скала^р МБД.С

Аппаратная составляющая Машин Скала^р

Машина Скала реестра МПТ РФ должна

- Быть собрана на единообразных системных платах производства РФ
- Содержать российские компоненты, если только у них нет аналогов производства РФ
- Использовать устанавливаемое ПО из реестра Минцифры
- Компоненты машины имеют отказоустойчивую архитектуру

В Машинах Скала р применяются:

ОЕМ* серверы производства:

Сетевое оборудование и сетевые карты производства РФ

Выбранная системная плата (сервер) определяется по согласованию с Заказчиком Машины

^{*} OEM — Original Equipment Manufacturer, производитель оригинального оборудования

Примеры внедрений Машин Скала^р

	Цель	Сделано
≡ ВТБ	Создание Единого корпоративного хранилища для повышения скорости и качества аналитической информации	Корпоративное хранилище данных
ГАЗПРОМБАНК	Создание Новой платформы данных	Новая платформ данных работает в проде
MKE	Создание Единого корпоративного хранилища и миграция с Oracle	Единое аналитическое хранилище
Социальный фонд России	Объединить ключевые социальные сервисы в рамках Единой Централизованной Цифровой платформы, которая объединяет ключевые социальныесервисы для граждан-РФ	Создание инфраструктуры и модернизация действующих систем и встраивание их в ГИС ЕЦП.

Техническая поддержка и услуги

Машины Скала^р поставляются с пакетами услуг технической поддержки:

техническая поддержка из «одного окна»

24×7

с поддержкой служб эксплуатации в круглосуточном режиме

возможность авансовой замены и ремонта оборудования по месту установки; опция невозврата накопителей с данными

продления

Круглосуточно

- 8-800-234-23-25
- tac@skala-r.ru
- личный кабинет Service Desk
- https://tac.skala-r.ru

В программу поддержки входит:

- решение инцидентов
- консультации по эксплуатации Машин
- предоставление обновлений ПО

Дополнительные профессиональные услуги

Программы дополнительных консультаций администрирования и эксплуатации Машин

Почему заказчики выбирают Скала^р

Глубокая интеграция и встречная оптимизация компонентов от платформенного ПО до микроконтроллеров:

- Высочайшая устойчивость
- Экстремальная производительность
- Стабильные показатели на предельных нагрузках
- Серийный выпуск, поддержка и сервисное обслуживание 24*7
- Быстрое развертывание и ввод в эксплуатацию
- Соответствие требованиям к критичным, высоконагруженным информационным системам
- Снижение совокупной стоимости владения (ТСО)

