скала р

Машина больших данных Скала р МБД.КХ

Программно-аппаратный комплекс для быстрых аналитических витрин с реляционным доступом на базе технологии ClickHouse (Arenadata QuickMarts)

ОГЛАВЛЕНИЕ

Перечень терминов и сокращений	5
1. Предисловие	7
1.1 Описание документа	7
1.2 Аудитория	7
1.3 Обратная связь	7
2. Введение	8
3. Отличительные черты	9
4. Подтвержденная безопасность	11
5. Принципы создания Машины МБД.КХ	14
5.1 Основные принципы	14
5.2 Столбцовое хранение данных	15
5.3 Способы работы с данными	17
6. Состав Машины	20
6.1 Подсистемы	20
6.1.1 Подсистема обеспечения базовых сервисов и Сетевая подсистема	22
6.1.2 Подсистема статистической обработки больших данных	22
6.1.3 Подсистема управления	22
6.1.4 Подсистема резервного копирования	23
6.1.5 Подсистема управления данными	23
6.1.6 Подсистема преобразования данных	23
6.2 Модули	23
6.2.1 Базовый модуль	23
6.2.2 Модуль статистической обработки	24
6.2.3 Модуль координации	25
6.2.4 Модуль резервного копирования	25
6.2.5 Специализированный модуль (для управления данными)	26
6.2.6 Специализированный модуль (для задач преобразования данных)	27
7. Специфичные черты	28
8. Гарантированное качество и полная готовность к промышленной эксплуатации	30
9. Реакция Машины на возможные отказы	32

Машина больших данных Скала^р МБД.КХ. Технический обзор

10. Вариативность решения	33
11. Требования к размещению Машины	34
12. Техническая поддержка	35
13. Лицензирование ПО в составе Модулей	37
13.1 Политика обновления ПО	37
Э Компании	38

Машина больших данных Скала^р МБД.КХ. Технический обзор

Документ носит исключительно информационный характер и является актуальным на дату размещения.

Технические характеристики, приведенные в документе — справочные и не могут служить основанием для претензий.

Технические характеристики могут отличаться от приведенных вследствие модификации изделий.

Технические характеристики и комплектация изделий могут быть изменены производителем без уведомления.

Документ не является публичной офертой и не содержит каких-либо обязательств ООО «СКАЛА-Р».

ПЕРЕЧЕНЬ ТЕРМИНОВ И СОКРАЩЕНИЙ

Термин, сокращение	Определение	
ETL	(англ. Extract, Transform, Load) — процесс транспортировки данных, при котором информацию из разных мест преобразуют и кладут в новое место	
ІоТ	(англ. Internet of Things) — «интернет вещей», глобальная сеть взаимосвязанных устройств, которые способны обмениваться данными через интернет	
MLAG	(англ. Multi-Switch Link Aggregation) — технология агрегации каналов, позволяющая одному или нескольким линкам с двух разных сетевых узлов быть объединенными вместе таким образом, что для конечного устройства это выглядит как одиночное соединение	
NFS	(англ. Network File System) — протокол сетевого доступа к файловым системам	
RAID	(англ. Redundant Array of Independent Disks) — избыточный массив независимых накопителей, технология виртуализации данных для объединения нескольких физических дисковых устройств в логический модуль для повышения отказоустойчивости и производительности	
SSD	(англ. Solid-State Drive) запоминающее устройство на основе микросхем памяти	
ГИС	Государственные информационные системы — системы, которые создаются для реализации полномочий государственных органов и обеспечения обмена информацией между ними, а также в иных установленных федеральными законами целях	
зокии	Значимый объект критической информационной инфраструктуры	
испдн	Информационные системы персональных данных. Совокупность информации, содержащейся в базах данных, и обеспечивающих её обработку с использованием информационных технологий и технических средств	
Кластер	Отказоустойчивая архитектура функционала Машины	
Машина	Автономный масштабируемый модульный программно- аппаратный комплекс (изделие с кодом ОКПД 26.14.20.160 из реестра радиоэлектронной продукции Минпромторга РФ), решающий функциональную задачу хранения, обработки и передачи данных согласно предустановленному системно- прикладному ПО и предоставляющий необходимые для задачи ресурсы вычислений и хранения	

Машина больших данных Скала^р МБД.КХ. Технический обзор

Термин, сокращение	Определение	
Модуль	Функционально завершенный комплект сконфигурированного для выполнения заданных функций аппаратных и/или программных компонентов, аппаратных узлов и программного обеспечения (ПО), оформленный как самостоятельная единица продаж со своим кодом (part number) и стоимостью. Является единым и неделимым элементом спецификации. Зарегистрирован в ЕРРРП	
OC	Операционная система	
ПАК	Программно-аппаратный комплекс	
ПО	Программное обеспечение	
Подсистема	Логическое объединение компонентов по функциональному признаку, с целью пояснения состава и принципов действия ПАК	
СУБД	Система управления базами данных	
СХД	Система хранения данных	
Узел	Вычислительный узел (сервер) или сетевой узел (коммутатор) в составе Модуля, в зависимости от контекста	

1. ПРЕДИСЛОВИЕ

1.1 Описание документа

Этот технический обзор дает концептуальный и архитектурный обзоры Машины больших данных Скала^р МБД.КХ.

Документ описывает то, как оптимизированные программно-аппаратные комплексы отвечают современным вызовам, и фокусируется на **Машине больших данных Скала^р МБД.КХ**.

1.2 Аудитория

Эта брошюра предназначена для сотрудников компании **Скала^р**, партнёров и Заказчиков, перед которыми ставятся задачи разработки, закупки, управления или эксплуатации **Машины больших данных Скала^р МБД.КХ**.

1.3 Обратная связь

Скала^р и авторы этого документа будут рады обратной связи по нему.

Свяжитесь с командой Скала^р по электронной почте MBD8@skala-r.ru.

2. ВВЕДЕНИЕ

Машина больших данных Скала^р МБД.КХ — это программно-аппаратный комплекс для высокоскоростной аналитики и устойчивой инфраструктуры, который предназначен для построения быстрых аналитических витрин с реляционным доступом. В **Машине** используется высокопроизводительная отечественная СУБД Arenadata QuickMarts (ADQM), основанная на ClickHouse и адаптированная под корпоративные задачи.

Машина разработана как готовая платформа для ускорения принятия решений в условиях больших объёмов данных — от аналитики до управления процессами в реальном времени.

Скала^р МБД.КХ демонстрирует ускорение при работе с данными более чем в 100 раз по сравнению с универсальными реляционными СУБД и превосходит классические аналитические СУБД со столбцовым хранением в 2–20 раз на витринных типах нагрузки.

ПАК построен по принципу "всё включено": в его состав входят вычислительные узлы, высокоскоростная сетевая инфраструктура, интеллектуальная система управления и может быть включена система резервного копирования. Это позволяет развернуть полноценную аналитическую платформу «под ключ» без дополнительных интеграционных затрат.

Ключевые преимущества

- Высокая производительность достигается за счёт применения современных стандартов — SSD/NVMe-накопителей, 100 Gigabit Ethernet и архитектурных оптимизаций на всех уровнях
- Отказоустойчивость по умолчанию реализована через использование надёжных комплектующих, резервирование критически важных компонентов и устойчивые сетевые протоколы
- Готовность к масштабированию: комплекс поддерживает работу с несколькими базами данных одновременно, что упрощает консолидацию систем и снижает стоимость сопровождения
- Прозрачность и контроль: встроенные средства мониторинга и управления охватывают как аппаратные, так и программные компоненты, обеспечивая полный контроль над состоянием системы

Машина больших данных Скала^р МБД.КХ построена на специализированной версии ClickHouse (ADQM), оптимизированной под корпоративные нагрузки, и подключается к внешней инфраструктуре через стандартные интерфейсы Ethernet.

Комплекс эксплуатируется в ряде крупнейших государственных и корпоративных организаций, во многих из них используется более 100 узлов. Продукт включён в Единый реестр российской радиоэлектронной продукции и использует отечественное программное обеспечение из реестра Минцифры РФ, что подтверждает его соответствие требованиям импортозамещения.

3. ОТЛИЧИТЕЛЬНЫЕ ЧЕРТЫ

Машина больших данных Скала^р МБД.КХ — это мощная платформа для аналитической обработки данных (OLAP), которая эффективно справляется с задачами агрегации, фильтрации, сортировки и объединения больших объёмов информации. Машина успешно используется для задач, критичных для операционного и стратегического управления:

- анализ поведения пользователей в веб- и мобильных приложениях, включая метрики пользовательской активности, транзакции и IP-активность
- мониторинг ошибок в реальном времени, включая выявление аномалий и инцидентов
- контроль SLA и производительности сервисов, что особенно важно для организаций, ведущих бизнес в том числе в цифровой среде
- построение BI-панелей в системах с мгновенным откликом на запросы, таких как: Luxms BI, Prognoz (Форсайт), Superset, Grafana, Yandex DataLens
- формирование отчётности по техническим журналам (Nginx, Kafka, Clickstream и др.) без необходимости использовать промежуточные хранилища или сложную ETL-инфраструктуру
- хранение и обработка временных рядов (time series) метрики, телеметрия, IoT

Машина используется для ряда задач в области искусственного интеллекта:

- для обучения ИИ-моделей и для нейросетевого вывода в качестве системы хранения признаков (временные ряды, история событий, флаги и агрегаты, расчетные поля)
- для отслеживания качества, выработки объяснений и отчётов в качестве системы обслуживания нейросетевого вывода (предсказания моделей, объяснения, версии моделей, сигнатура, параметры)
- для генерации признаков и обучения в качестве хранилища исторических структурированных данных (данные из CRM, 1C, ГИС, SCADA, IoT, справочники, классификаторы)

Высокая производительность

Машина больших данных Скала^р МБД.КХ спроектирована так, чтобы максимально эффективно использовать ресурсы ввода-вывода:

- чтение требуемых данных при запросах сканируются только задействованные столбцы, что значительно снижает нагрузку на систему ввода-вывода
- блочное и столбцовое сжатие уменьшает объём хранения и повышает скорость выборки
- векторный движок обработки данных операции выполняются над наборами значений, используя векторные процессорные инструкции (AVX), что даёт прирост производительности и экономит ресурсы

 динамическая кодогенерация — запросы компилируются в исполняемый код «на лету», обеспечивая скорость выполнения выше, чем при традиционном интерпретируемом подходе

Линейная масштабируемость при росте хранимых данных

Одно из ключевых преимуществ Скала^р МБД.КХ — линейная масштабируемость:

- комплекс способен эффективно работать с объёмами данных вплоть до петабайтного уровня
- поддерживается сценарий распределения данных между несколькими датацентрами, включая территориально удалённые площадки, что важно для катастрофоустойчивости и геораспределённых структур

Надежность, доступность и устойчивость

Архитектура комплекса изначально спроектирована под кластерную работу, с возможностью настройки нужного уровня репликации и отказоустойчивости, что обеспечивает высокую доступность сервисов даже в случае сбоев оборудования.

Благодаря столбцовому хранению и оптимизациям, система достигает сжатия данных в десятки, а порой и в сотни раз, снижая нагрузку на инфраструктуру.

Расширенные возможности SQL

Поддерживаемый в платформе SQL-диалект включает:

- аналитические расширения SQL-стандарта (поддержка словарей, массивов и развитый функционал по работе с ними, включая функции высшего порядка)
- приблизительные вычисления для быстрой аналитики на больших выборках
- функции обработки URL, JSON, полигонов и других сложных типов данных без внешних обёрток и дополнительных движков
- расширения для быстрой работы с потоками событий, техническими журналами, путями посещения ресурсов (clickstream) и телеметрией

4. ПОДТВЕРЖДЕННАЯ БЕЗОПАСНОСТЬ

Машина больших данных Скала^р МБД.КХ поставляется с сертифицированной **ОС Альт 8 СП** (сертификат ФСТЭК 3866 от 10.08.2018, действует до 10.08.2028).

ОС может применяться для защиты информации в:

- значимых объектах критической информационной инфраструктуры 1 категории
- в государственных информационных системах 1 класса защищённости
- автоматизированных системах управления производственными и технологическими процессами 1 класса защищённости
- информационных системах персональных данных при необходимости обеспечения 1 уровня защищённости персональных данных
- информационных системах общего пользования 2 класса

ОС соответствует требованиям следующих нормативных документов:

- «Требования безопасности информации к операционным системам» (ФСТЭК России, 2016) и «Профиль защиты операционных систем типа А 4 класса защиты. ИТ.ОС.А4.П3» (ФСТЭК России, 2017) по 4 классу защиты
- «Требования по безопасности информации к средствам контейнеризации» (ФСТЭК России, 2022, приказ № 118) по 4 классу защиты
- «Требования по безопасности информации к средствам виртуализации» (ФСТЭК России, 2022, приказ № 187) по 4 классу защиты
- «Требования по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2020, приказ № 76) по 4 уровню доверия

В зависимости от требований Заказчика в **Машине больших данных Скала^р МБД.КХ** может использоваться одна из сертифицированных **СУБД Arenadata**:

- Arenadata QuickMarts T4 (Сертификат ФСТЭК 4823 от 03.07.2024, действует до 03.07.2029) соответствует «Требованиям по безопасности информации к системам управления базами данных» (ФСТЭК России, 2023) по 4 классу защиты и «Требованиям по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2020, приказ № 76) по 4 уровню доверия
- Arenadata QuickMarts (Сертификат ФСТЭК 4682 от 08.06.2023, действует до 08.06.2028) соответствует «Требованиям по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2020, приказ № 76) по 6 уровню доверия

СУБД Arenadata QuickMarts T4 может применяться для хранения данных в:

- значимых объектах критической информационной инфраструктуры 1 категории
- государственных информационных системах 1 класса защищённости
- автоматизированных системах управления производственными и технологическими процессами 1 класса защищённости
- информационных системах персональных данных при необходимости обеспечения 1 уровня защищенности персональных данных
- в информационных системах 2 класса общего пользования

СУБД Arenadata QuickMarts может применяться для хранения данных в:

- значимых объектах критической информационной инфраструктуры 3 категории
- государственных информационных системах 3 класса защищённости
- автоматизированных системах управления производственными и технологическими процессами 3 класса защищённости
- информационных системах персональных данных при необходимости обеспечения 3 и 4 уровня защищенности персональных данных

Протестирована совместимость с наложенными средствами защиты

Сертифицированная система единой аутентификации **Avanpost FAM** (сертификат ФСТЭК 4492 от 13.12.2021, действует до 13.12.2026) соответствует документу «Требования по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2020, приказ № 76) по 4 уровню доверия.

Сертифицированное антивирусное средство защиты **Kaspersky Endpoint Security для Linux** (сертификат ФСТЭК 2534 от 27.12.2011, действует до 27.12.2025) соответствует документам:

- «Требования по безопасности информации, устанавливающие уровни доверия к средствам технической защиты информации и средствам обеспечения безопасности информационных технологий» (ФСТЭК России, 2020) — по 2 уровню доверия
- «Требования к средствам антивирусной защиты» (ФСТЭК России, 2012)
- «Профиль защиты средств антивирусной защиты типа Б 2 класса защиты. ИТ.САВЗ.Б2.13» (ФСТЭК России, 2012)

Машина больших данных Скала^р МБД.КХ. Технический обзор

- «Профиль защиты средств антивирусной защиты типа В второго класса защиты.
 ИТ.САВЗ.В2.П3» (ФСТЭК России, 2012)
- «Профиль защиты средств антивирусной защиты типа Г второго класса защиты»

Сертифицированное средство доверенной загрузки ПК «Соболь» версия 4 подтверждает соответствие требованиям руководящих документов к средствам доверенной загрузки, а также 2 уровню доверия средств технической защиты безопасности и обеспечения безопасности информационных технологий и возможность использования в ИСПДн до УЗ1 включительно, в ГИС до 1 класса защищенности включительно и в ЗОКИИ до 1 категории включительно.

5. ПРИНЦИПЫ СОЗДАНИЯ МАШИНЫ МБД.КХ

Машины больших данных Скала^р МБД.КХ часто используют как хранилище для витрин данных, которые используют ВІ-инструменты или фронтенд, так как в основу создания **Машины** заложены следующие технические особенности:

- столбцовое хранение данных (эффективно для аналитики)
- сжатие данных и высокая производительность
- распределенная архитектура
- поддержка SQL-подобного языка запросов

5.1 Основные принципы

Чтобы обеспечить максимальную надёжность и производительность, при проектировании **Машины больших данных Скала^р МБД.КХ** были заложены принципы, которые применяются в лучших инженерных системах мирового уровня.

Технологические принципы

- Надёжность по умолчанию ключевые компоненты системы дублируются, что обеспечивает бесперебойную работу даже при сбоях отдельных узлов
- Скорость и мощность используются только высокопроизводительные компоненты, проверенные в нагрузочных сценариях
- Горизонтальный рост без ограничений при увеличении объёма данных или нагрузки система масштабируется за счёт добавления новых узлов, без необходимости в полной замене оборудования
- Устойчивость к сбоям даже если один из компонентов выйдет из строя, система продолжит работу

Технические решения

- **Машина** построена по модульной архитектуре, что позволяет быстро адаптировать конфигурацию под задачи Заказчика
- Управление и мониторинг всех компонентов осуществляется через собственное специализированное программное обеспечение
- Каждый узел и компонент проходит многоуровневое тестирование ещё на этапе производства, что гарантирует надёжность всей системы при вводе в эксплуатацию
- Все аппаратные и программные компоненты глубоко адаптированы друг к другу это исключает проблемы совместимости и повышает общую эффективность решения

Архитектура МБД.КХ: масштабируемость и стабильность как базовая гарантия

Машина больших данных Скала^р МБД.КХ изначально спроектирована для того, чтобы эффективно справляться с ростом нагрузки и объёмов данных без потери производительности и без необходимости перестройки всей инфраструктуры.

Горизонтальная масштабируемость

Архитектура ADQM, основанная на ClickHouse, позволяет добавлять узлы в кластер по мере роста объёма данных и числа запросов. Новые ресурсы включаются в работу без остановки системы.

Параллельная обработка

Запросы обрабатываются одновременно на нескольких узлах. Это позволяет распределять нагрузку и линейно масштабировать производительность.

Высокоскоростная внутренняя сеть

Все узлы связаны через выделенную сеть до 100 Гбит/с, что обеспечивает стабильную скорость взаимодействия между компонентами без «узких мест».

Резервирование данных

Машина поддерживает репликацию данных между узлами, что обеспечивает как отказоустойчивость, так и сохранность данных, а создание копий данных происходит параллельно с выполнением запросов и не снижает доступность сервиса.

Один поставщик — единая архитектурная ответственность

В отличие от классических интеграционных подходов, где каждый компонент поставляется отдельно, **Скала^р МБД.КХ** разрабатывается и поставляется как единое решение, и это означает:

- единый SLA и техническая поддержка на всё решение
- ответственность за всю платформу у одного производителя
- быстрое масштабирование, обновление и сопровождение без «перекидывания» ответственности между поставщиками

5.2 Столбцовое хранение данных

Реляционные СУБД общего назначения очень хорошо справляются с задачами обработки и изменения единичных записей в транзакционных системах, однако, при выполнении аналитических запросов такие СУБД требует значительных аппаратных ресурсов и их производительность, как правило, недостаточна. Строчное хранение, используемое в реляционных системах общего назначения, обеспечивает эффективную обработку транзакций ценой крайне медленной работы сложных аналитических запросов, в тех случаях, когда необходимо агрегировать информацию из миллиардов строк.

При создании отчётов в строковых СУБД приходится анализировать множество связанной информации, это приводит к необходимости считывания всех строк, необходимых для выполнения запроса, при этом в каждом конкретном запросе используются лишь некоторые из полей, а остальные данные просто являются сопутствующей нагрузкой, что

загружает ресурсы системы. На скорость построения выборок из такого количества записей несущественно влияет даже оптимизация, настроенные индексы и ключевые поля. Агрегация данных происходит уже на последующем этапе.

Поэтому для эффективной обработки аналитических запросов применяется столбцовое хранение: данные физически хранятся не по строкам, а по столбцам, что позволяет эффективно сжимать данные (поскольку данные в столбцах одного типа) и производить доступ только к запрошенным столбцам, в результате объёмы данных, пропускаемые через подсистему ввода-вывода, сокращаются на порядки. При этом вставка или изменение единичных записей при такой организации хранения намного более ресурсозатратны.

Для аналитических задач характерны следующие свойства:

- большинство запросов поступает на чтение данных
- данные добавляются и обновляются достаточно большими блоками более 1000 строк, а не по одной, или не добавляются и не обновляются
- при чтении используется значительное количество строк данных, и небольшое количество столбцов

Таким образом, неэффективность коротких вставок в базу данных со столбцовой организацией хранения в аналитических системах не является критическим недостатком, а эффект, получаемый при доступе к данным — существенный.

Сравнение столбцового и строкового хранения данных представлено ниже (Рисунок 1). Во втором случае объем считываемых данных существенно больше.

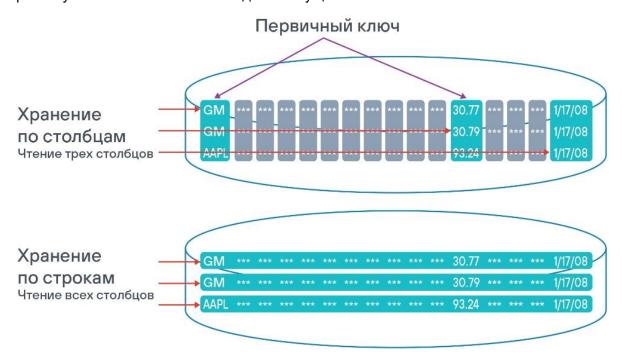


Рисунок 1. Схема сравнения

Операции выборки при столбцовом и строчном хранении СУБД ADQM созданы таким образом, чтобы можно было быстро строить аналитические отчёты по данным, не прошедшим предварительную агрегацию. Такой подход позволяет намного эффективнее, в сравнении с другими системами, решать задачи подготовки аналитической информации,

поэтому его активно используют в мониторинге и бизнес-аналитике, а также для анализа данных телеметрии.

Ниже приведены архитектурные особенности ADQM:

- хранение данных в столбцах позволяет считывать информацию только из нужных колонок, а также обеспечивать сжатие однотипной информации
- поддерживаются приближённые вычисления для частичных выборок данных, что позволяет снизить число обращений к подсистеме хранения и повышает скорость обработки запросов
- физическая сортировка данных по первичному ключу позволяет быстро получать конкретные значения или диапазоны
- векторные вычисления по фрагментам данных столбцов позволяют снизить издержки на диспетчеризацию и повысить эффективность использования процессоров
- применение параллельных операций как в пределах одного сервера на несколько процессорных ядер, так и в рамках распределённых вычислений на кластере за счёт механизма сегментирования позволяет существенно повысить производительность системы
- линейная масштабируемость позволяет построить кластер со многими десятками узлов
- отказоустойчивость реализована за счёт репликации сегментов

ADQM поддерживает множество клиентских программ для подключения:

- консольный клиент
- HTTP API
- компоненты Python
- PHP
- Node.js
- Perl, Ruby, R и многие другие

Также для ADQM применяются ODBC, JDBC и Golang-драйверы.

5.3 Способы работы с данными

В **Машине больших данных Скала^р МБД.КХ** используется набор движков для работы с данными. Движок — это интеграционный интерфейс, который определяет способ и место хранения данных таблицы, а также особенности обработки хранимых данных. Движок позволяет хранить данные внутри кластера, управлять ими и взаимодействовать с другими приложениями.

В Машине больших данных Скала^р МБД.КХ используются движки, показанные в таблице ниже.

Таблица 1. Движки Машины больших данных Скала^р МБД.КХ

Семейство	Описание	Движок	
MERGETREE	Наиболее универсальные и функциональные движки для задач с высокой нагрузкой. Обеспечивают относительно быструю вставку данных без синхронизации с последующим слиянием в фоновом режиме.	 MergeTree ReplacingMergeTree SummingMergeTree AggregatingMergeTree CollapsingMergeTree VersionedCollapsingMergeTree GraphiteMergeTree 	
LOG	Легковесные движки с минимальной функциональностью. Разработаны для сценариев, когда необходимо быстро записывать много таблиц с небольшим объёмом данных (менее 1 миллиона строк), а затем читать их целиком.	TinyLogStripeLogLog	
Движки для интеграции	Движки для взаимодействия с другими системами хранения и обработки данных.	 Kafka MySQL HDFS Hive S3 MongoDB RabbitMQ PostgreSQL Redis 	

Машина больших данных Скала^р МБД.КХ. Технический обзор

Семейство	Описание	Движок
Специальные движки	Различные механизмы, которые определяют место хранения данных, их запись и чтение, поддерживаемые запросы, способы доступа к информации и другие параметры/	 Distributed MaterializedView Dictionary Merge File Null Set Join URL View Memory Buffer

6. СОСТАВ МАШИНЫ

Ниже приведены термины, используемые для комплектации **Машины больших данных Скала^р МБД.КХ**.

Машина — это набор аппаратного и программного обеспечения в виде **Модулей Скала^р**, соединенных вместе для обеспечения определенного метода обработки данных или предоставления ИТ-сервисов с заданными характеристиками.

Подсистема — логическое объединение компонентов по функциональному признаку, с целью пояснения состава и принципов действия ПАК.

Модуль — это единица поставки **Машин**, выполняющая определенные функции в соответствии с её назначением. Модуль является единым и неделимым элементом спецификации и содержит набор аппаратных узлов и ПО.

Узел — это элемент, выполняющий определенную задачу в составе Модуля.

Комплекты поставки

Машины больших данных Скала^р МБД.КХ поставляются в виде функционально полного набора Модулей Скала^р и комплектуются в соответствии с показателями назначения, полученными от Заказчика. Машина включает в себя базовый комплект и в случае необходимости дополняется комплектом модулей расширения и/или специальными модулями.

Базовый комплект — это набор **Модулей Скала^р**, минимально-необходимый для функционирования всех подсистем, обеспечивающих выполнение основного функционала **Машины**.

Комплект модулей расширения — это набор **Модулей Скала^р**, позволяющий, увеличить производительность, объём хранения и портовую ёмкость. Кроме того, можно добавить специальные **Модули Скала^р**, позволяющие расширить функциональность ПАК.

6.1 Подсистемы

Функции Машины больших данных Скала^р МБД.КХ логически объединены в подсистемы. Часть подсистем обеспечивают основной функционал и всегда включены в Машину, а часть — дополнительный функционал и могут быть добавлены по требованию Заказчика.

Основной функционал — это минимальный набор подсистем, необходимых **Машине больших данных Скала^р МБД.КХ** для выполнения задач прямого назначения.

Дополнительный функционал — набор подсистем из Модулей, обеспечивающих расширение функций **Машины больших данных Скала^р МБД.КХ**.

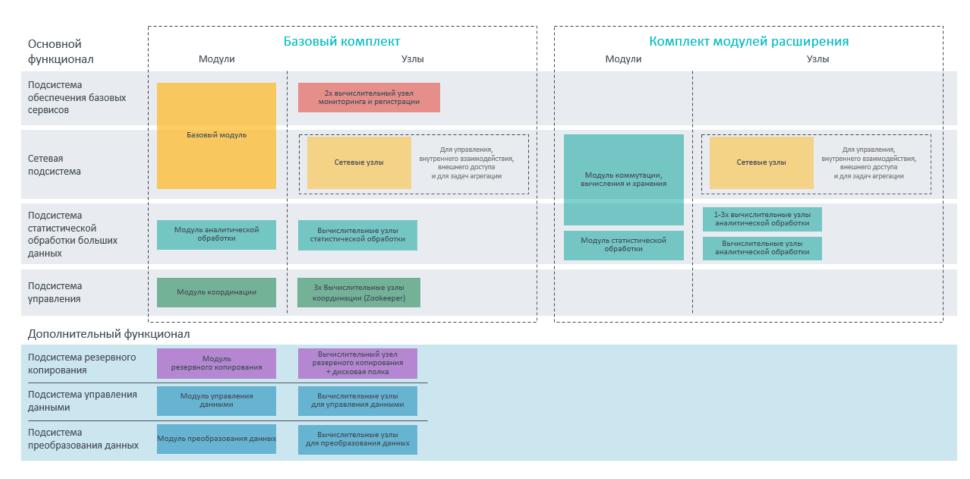


Рисунок 2. Комплектация Машины больших данных Скала^р МБД.КХ

6.1.1 Подсистема обеспечения базовых сервисов и Сетевая подсистема

Подсистема обеспечения базовых сервисов отвечает за мониторинг и управление аппаратными и программными компонентами **Машины больших данных Скала^р МБД.КХ**. В неё включены вычислительные узлы **Базового модуля** (см. п. 6.2.1), на которых предустановлено сервисное ПО **Скала^р Геном** и **Скала^р Визион**, выполняющее следующие функции:

- сбор, хранение и отображение данных на панелях мониторинга
- управление аппаратными компонентами
- управление пользователями и аутентификация (опционально)
- настройка программных компонентов
- настройка интеграции со сторонним ПО
- контроль и управление очередями подсистемы потоковой обработки данных

Архитектура подсистемы обеспечения базовых сервисов обеспечивает отказоустойчивый режим работы.

Сетевая подсистема выполняет функций организации сетевой связанности между всеми вычислительными узлами, входящими в состав **Машины больших данных Скала^р МБД.КХ**, и представляет собой набор сетевых узлов, которые организуют изолированные высокоскоростные сети:

- внутреннего взаимодействия (25 или 100 Гбит/с) для организации быстрого функционирования между всеми компонентами ПАК
- внешнего доступа (25 или 100 Гбит/с) для организации доступа к данным, что хранятся на узлах, входящих в состав подсистемы аналитической обработки данных
- управления (1 Гбит/с) для организации передачи сервисной информации с вычислительных узлов, входящих в состав подсистемы аналитической обработки данных, на вычислительные узлы, входящие в состав подсистемы обеспечения базовых сервисов

Стартовый комплект сетевых узлов всегда размещается в Базовом модуле (см. п. 6.2.1).

6.1.2 Подсистема статистической обработки больших данных

Основная подсистема, которая выполняет функции быстрой обработки аналитических запросов по большим наборам данных (от гигабайтов до петабайтов), где важна скорость ответа — от миллисекунд до секунд.

Подсистема реализуется Модулем статистической обработки (см. п. 6.2.2).

6.1.3 Подсистема управления

- Выполняет функции управления данными, что хранятся в подсистеме статистической обработки больших данных
- Отвечает за репликацию данных
- Обеспечивает согласованность данных. В основе подсистемы лежит ПО Zookeeper

Подсистема реализуется Модулем координации (см. п. 6.2.3).

6.1.4 Подсистема резервного копирования

Включает один или несколько **Модулей резервного копирования** (см. п. 6.2.4), в зависимости от объёма данных, подлежащих хранению в виде копий. В основе подсистемы лежит ПО, работающее по протоколу NFS.

6.1.5 Подсистема управления данными

Отвечает за организацию совместной работы с данными, интеграцию метаданных из различных систем обработки и анализа данных, а также предоставляет возможности поиска данных и совместной работы с метаданными, ведения корпоративного бизнесглоссария и его тесной интеграции с каталогом данных. В основе подсистемы лежит ПО Arenadata Catalog.

Подсистема реализуется Модулем управления данными (см. п. 6.2.5).

6.1.6 Подсистема преобразования данных

Состоит из **Модулей преобразования данных** (см. п. 6.2.6), которые необходимы для создания аналитических платформ, а также для интеграции, выгрузки и обработки данных из любых источников. Является основой для выстраивания и оркестрации ETL/ELT-процессов.

6.2 Модули

6.2.1 Базовый модуль

Название в Едином реестре российской радиоэлектронной продукции — СКАЛА-Р Базовый модуль. Обеспечивает функционирование подсистемы обеспечения базовых сервисов и сетевой подсистемы.

Назначение

- Обеспечение сетевой связанности между компонентами
- Организация выделенной сети управления Машиной
- Организация подключения к сети Заказчика
- Исполнение функций мониторинга и управления компонентами Машины

Узлы

- Два вычислительных узла мониторинга и регистрации, которые объединены в зеркальный кластер и используются для служебных функций
- Два сетевых узла 25/100 Гбит/с для организации внутреннего сетевого взаимодействия
- Два сетевых узла 25/100 Гбит/с для организации сети внешнего доступа (опционально)
- Сетевой узел 1 Гбит/с для организации работы сети управления, также может быть выполнен в отказоустойчивом исполнении

 Два сетевых узла 100 Гбит/с для организации агрегации, в случае добавления внутренних портов в крупных конфигурациях ПАК (опционально)

Отказоустойчивость обеспечена

- Резервированием вычислительных узлов, отвечающих за мониторинг и управление компонентами **Машины**
- Технологией RAID для дисков вычислительных узлов
- Резервированием сетевых коммутаторов (объединение сетевых узлов в MLAGпару)

Применяемое программное обеспечение

- Скала^р Визион
- Скала^р Геном
- ОС Альт 8 СП
- Сервисное ПО, входящее в состав Arenadata Cluster Manager (ADCM)
- ПО для управления пользователями и аутентификацией (опционально)

6.2.2 Модуль статистической обработки

Название в Едином реестре российской радиоэлектронной продукции — СКАЛА-Р Модуль потоковой обработки. Обеспечивает функционирование подсистемы потоковой обработки больших данных.

Назначение

- Обработка статистических данных
- Хранение данных по столбцам
- Обеспечение высокой степень сжатия и производительности

Узлы

В состав Модуля входят вычислительные узлы, распределённые по 2 типам нагрузки:

- тип 1 высокопроизводительный, необходимый для работы на высоких нагрузках
- тип 2 наиболее сбалансированный, позволяющий хранить больше данных

Отказоустойчивость обеспечена

- Хранением данных минимум на 2 вычислительных узлах
- Технологией RAID для дисков вычислительных узлов
- Резервированием сетевых коммутаторов (объединение сетевых узлов в MLAGпару)

Применяемое программное обеспечение

- Arenadata QuickMarts (ADQM)
- ОС Альт 8 СП

6.2.3 Модуль координации

Название в Едином реестре российской радиоэлектронной продукции — СКАЛА-Р Модуль координации. Обеспечивает функционирование подсистемы управления.

Назначение

- Обеспечение согласованности при обработке данных
- Обеспечение репликации таблиц (определение кто лидер, какие данные уже скопированы, какие еще нужно синхронизировать)
- Распределенные вставки и дедупликация
- Управление задачами фоновых потоков (объединение, очистка)

Узлы

В состав Модуля входят три вычислительных узла, которые распределены по 2 типам нагрузки:

- тип 1 высокопроизводительный, необходимый для работы на высоких нагрузках
- тип 2 наиболее сбалансированный, позволяющий хранить больше данных

Отказоустойчивость обеспечена

- Выполнением операций минимум на 3 вычислительных узлах, логически связанных между собой
- Технологией RAID для накопителей вычислительных узлов
- Резервированием сетевых коммутаторов (объединение сетевых узлов в MLAGпару)

Применяемое программное обеспечение

- Zookeeper, входящий в состав Arenadata QuickMarts (ADQM)
- ОС Альт 8 СП

6.2.4 Модуль резервного копирования

Название в Едином реестре российской радиоэлектронной продукции — СКАЛА-Р Модуль резервного копирования. Обеспечивает функционирование подсистемы резервного копирования.

Назначение

- Резервирования и восстановления данных
- Хранение резервных копий

Узлы

В состав Модуля входит один вычислительный узел, обеспечивающий хранение до 94 Тбайт данных. Хранение осуществляется на накопителях NL-SAS

Отказоустойчивость обеспечена

- Технологией RAID для накопителей вычислительных узлов
- Резервированием сетевых коммутаторов (объединение сетевых узлов в MLAGпару)

Применяемое программное обеспечение

Сетевая файловая система (NFS) — распределенная файловая система, которая обеспечивает пользователям доступ к файлам, расположенным на вычислительных узлах.

6.2.5 Специализированный модуль (для управления данными)

Название в Едином реестре российской радиоэлектронной продукции — СКАЛА-Р Специализированный модуль. Обеспечивает функционирование подсистемы управления данными (см. п. 6.1.5). Интерфейс основного функционального ПО Модуля предоставляет доступ к каталогу метаданных, бизнес-глоссарию, поиску, профилированию и проверке качества корпоративных данных.

Назначение

- Интеграции метаданных из различных систем обработки
- Анализа данных, поиска данных, совместной работы с метаданными
- Ведения корпоративного бизнес-глоссария и его интеграции с каталогом данных

Узлы

В состав Модуля входит не менее двух вычислительных узлов

Отказоустойчивость обеспечена

- Резервированием вычислительных узлов
- Технологией RAID для накопителей вычислительных узлов
- Резервированием сетевых коммутаторов (объединение сетевых узлов в MLAGпару)

Применяемое программное обеспечение

- Arenadata Catalog (ADC)
- ОС Альт 8 СП

6.2.6 Специализированный модуль (для задач преобразования данных)

Название в Едином реестре российской радиоэлектронной продукции — СКАЛА-Р Специализированный модуль. Обеспечивает функционирование подсистемы преобразования данных (см. п. 6.1.6).

Назначение

Используется для решения задач, связанных с интеграцией данных, построения и наполнения хранилищ и витрин данных.

Узлы

В зависимости от модификации, Модуль может состоять из 2× или 3× вычислительных узлов.

Отказоустойчивость обеспечена

- Резервированием вычислительных узлов
- Технологией RAID для накопителей вычислительных узлов
- Резервированием сетевых коммутаторов (объединение сетевых узлов в MLAGпару)

Применяемое программное обеспечение

ПО для управления ETL-процессами

7. СПЕЦИФИЧНЫЕ ЧЕРТЫ

При проектировании **Машины больших данных Скала^р МБД.КХ** команда сделала ставку на надёжность, предсказуемую производительность и устойчивость к сбоям. Ниже представлены ключевые технические принципы, которые легли в основу конструкции.

Ставка на сохранность данных

В критичных системах главное — не потерять данные, поэтому приоритет отдан гарантированной сохранности:

- данные сохраняются даже при единичных отказах оборудования
- быстрое восстановление возможно за счёт применения механизмов резервного копирования

Аппаратное выполнение вместо виртуализации

Все вычисления выполняются на «BareMetal», без виртуальных слоёв:

- нет просадок от гипервизоров, максимум производительности на каждом узле
- стабильная и предсказуемая производительность
- повышенная надёжность: меньше точек отказа, меньше скрытых взаимозависимостей

Локальные накопители вместо сетевых СХД

Архитектура опирается на локальное хранение:

- сокращаются издержки на передачу данных
- обеспечивается линейная масштабируемость по операциям ввода-вывода в единицу времени (IOPS) и по пропускной способности в единицу времени (GBPs), без «бутылочного горлышка» по пропускной способности, характерной для сетевых систем хранения

Оборудование обеспечивает полноценную работу при высоких нагрузках

Все компоненты — типовые, надёжные и массово доступные:

- всё протестировано в лабораториях Скала^р под реальную и высокую нагрузку
- упрощённое сопровождение, высокая ремонтопригодность

Гибкая интеграция в существующую ИТ-среду

Поддерживается подключение к существующим системам мониторинга и управления:

- можно использовать типовое ПО и собственные инструменты Заказчика
- легко встраивается в централизованные системы управления инфраструктурой и не требует изоляции

Аппаратные RAID-контроллеры — ставка на надёжность и скорость восстановления

В **Машине больших данных Скала^р МБД.КХ** применяются только аппаратные RAID-контроллеры, что обеспечивает:

- предсказуемую производительность при любых сценариях нагрузки, включая деградированные режимы
- быстрое восстановление массива при сбое накопителя, благодаря оптимизированным алгоритмам контроллера
- снижение нагрузки на CPU за счёт вынесения RAID-логики на выделенное оборудование
- повышенную устойчивость к аппаратным и программным сбоям в подсистеме хранения

Это решение даёт стабильность на уровне хранения и минимизирует риски потери данных, что особенно критично при работе с витринами, журналами событий и историческими архивами.

8. ГАРАНТИРОВАННОЕ КАЧЕСТВО И ПОЛНАЯ ГОТОВНОСТЬ К ПРОМЫШЛЕННОЙ ЭКСПЛУАТАЦИИ

Машина больших данных Скала^р МБД.КХ создаётся как законченный промышленный продукт, с акцентом на качество на всех этапах жизненного цикла — от сборки и настройки до поддержки и масштабирования. Ни один компонент не остаётся без контроля.

Производство и сборка: без компромиссов

- Используются только проверенные комплектующие, отобранные под реальные нагрузки
- Все компоненты собираются строго по регламенту, в соответствии с утверждённой схемой размещения
- Развёртывание программного обеспечения и первичная настройка выполняются автоматизировано, чтобы исключить «ручные» ошибки
- Все машины перед отгрузкой проходят функциональное тестирование и проверку на наличие известных уязвимостей
- Возможны индивидуальные конфигурации под специфику задач Заказчика

Передача в эксплуатацию: все готово к работе

- **Машина** поставляется в полной готовности к работе готова к эксплуатации сразу после подключения к сети Заказчика
- В комплект входят: паспорт изделия и сертификат поддержки, полный пакет документации для прохождения аттестаций и согласований, обучение специалистов Заказчика (по запросу)

Техническая поддержка: от производителя, без посредников

- Поддержка входит в поставку (по умолчанию 1 год, оптимально 3 или 5 лет)
- Доступны пакеты технической поддержки 9×5 или 24×7, в зависимости от критичности системы Заказчика
- Первая и вторая линии поддержки непосредственно от производителя или сертифицированного партнёра
- В сложных ситуациях в работу подключаются архитекторы и разработчики самой **Машины** 3-я линия поддержки в России, без эскалации за рубеж

Сопровождение и развитие под задачи бизнеса

По запросу возможно:

- аппаратное расширение и модернизация
- горизонтальное и вертикальное масштабирование
- адаптация Машины под новые задачи

Все доработки выполняются с участием тех, кто проектировал и создавал **Машину больших данных Скала^р МБД.КХ**, что снижает риски и обеспечивает стабильность в эксплуатации.

9. РЕАКЦИЯ МАШИНЫ НА ВОЗМОЖНЫЕ ОТКАЗЫ

Отказы, связанные со стандартными элементами Скала^р МБД.КХ

- В Машине больших данных Скала^р МБД.КХ обеспечена отказоустойчивость её основных элементов и процессов, в том числе:
 - узлов (дублирование процессоров, источников питания и др.)
 - подсистемы ввода-вывода (RAID)
 - сети внутреннего взаимодействия (дублирование сетевых интерфейсов)
 - системы резервного копирования

Отказы перечисленных элементов отрабатываются стандартными алгоритмами в соответствии с произведёнными настройками. Любой единичный отказ не повлияет на доступность системы в целом, хотя по конкретному сервису возможно небольшое снижение производительности. После устранения неисправности исходная производительность Машины также восстанавливается.

Отказы, связанные с узлами кластера

Аппаратные сбои

Архитектура программного обеспечения, лежащего в основе **Машины больших данных Скала^р МБД.КХ**, позволяет построить отказоустойчивый многоузловой кластер.

Отказоустойчивость обеспечивается за счёт настройки репликации таблиц между узлами, а также избыточности экземпляров сервиса Zookeeper, который отвечает за хранение метаданных, необходимых для репликации. При этом отказоустойчивым считается кластер, состоящий как минимум из трех узлов Zookeeper и двух узлов сегментов ADQM.

В случае, если все экземпляры Zookeeper недоступны, реплицируемые таблицы остаются доступными только для чтения, а запросы на запись приведут к выдаче исключения. При восстановлении доступности сервиса данные будут автоматически синхронизированы, если это возможно.

Программные сбои и человеческий фактор

Кроме обеспечения отказоустойчивости, по требованию Заказчика в **Машину** может быть интегрирована система резервного копирования.

Одним из вариантов решения данной задачи является дублирование данных в Hadoop или в S3, например, путем подписки дополнительных потребителей на темы Kafka.

Детальный порядок обеспечения отказоустойчивости кластера и рекомендации по действиям при его администрировании могут быть предоставлены по запросу.

10. ВАРИАТИВНОСТЬ РЕШЕНИЯ

Приоритет производительности

Область применения:

- дополнение к аналитической части систем класса Data Warehouse
- хранение информации оперативного доступа
- системы с множественными аналитическими запросами

Варианты решения:

- увеличенный объём оперативной памяти
- повышение базовой частоты работы процессоров
- высокопроизводительные SSD
- RAID 10

Приоритет объёма хранения

Область применения:

- база аналитической информации предприятия
- данные с датчиков, устройств IoT
- журналы действий пользователей
- данные исторического анализа

Вариант решения:

- стандартные параметры вычислительного модуля
- SSD повышенного объёма

Специальный тюнинг

Вариант решения:

- может использоваться в комплексе с любым из вариантов
- требуется участие разработчиков прикладных систем
- достигается адаптацией настроек и конфигурации оборудования под структуру данных Заказчика, типы и периодичность запросов и т.п.

11. ТРЕБОВАНИЯ К РАЗМЕЩЕНИЮ МАШИНЫ

Машина больших данных Скала^р МБД.КХ представляет собой комплект узлов для размещения в серверный монтажный шкаф 19", высота 42U и больше, с дальнейшей возможностью модульной расширяемости до 14 стоек (или более).

Монтажный шкаф (стойка) может быть поставлена как опция.

Для подключения шкафа к системе электроснабжения должны быть предусмотрены два независимых входа электропитания.

Расчетная потребляемая мощность шкафа (задается параметрами ЦОД Заказчика) определяет топологию размещения модулей и узлов в стойках ЦОД и учитывается при расчете **Машины**. От этого зависит количество дополнительного коммутационного оборудования в составе **Машины**.

В месте установки должны быть предусмотрены соответствующие мощности по отводу тепла.

Для подключения к локальной сети Заказчика необходим резервированный канал до 4×100 Gigabit Ethernet или до 8×10/25 Gigabit Ethernet. Требуемые трансиверы определяются на этапе формирования спецификации **Машины**.

При развёртывании будут выполнены настройки сетевых адресов в соответствии со структурой сети Заказчика. Заказчик должен предоставить необходимые данные в соответствии с номенклатурой компонентов **Машины больших данных Скала^р МБД.КХ**.

В сети Заказчика должны быть настроены соответствующие маршруты и права доступа.

Дальнейшие мероприятия по вводу в эксплуатацию осуществляются Заказчиком путём настройки прикладных программных систем.

12. ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Поставка **Машин больших данных Скала^р МБД.КХ** осуществляется с предварительными сборкой, тестированием и настройкой оборудования согласно требованиям Заказчика. Качественная поддержка обеспечивается едиными стандартами гарантийного и постгарантийного технического обслуживания:

- пакет услуг по технической поддержке на первый год включен в поставку
- Заказчик может выбирать пакет 9×5 или 24×7 (вариант для комплексов критической функциональности)
- срок начально приобретаемой технической поддержки может быть увеличен до 3-х и 5-и лет, также доступна пролонгация поддержки

Состав типовых пакетов услуг по технической поддержке **Машин больших данных Скала^р МБД.КХ** представлен в таблице 2.

Таблица 2. Пакеты услуг по технической поддержке

Услуги	Пакет «9×5»	Пакет «24×7»
«Режим предоставления услуг 9×5» (в рабочее время по рабочим дням)	+	_
«Режим предоставления услуг 24×7» (круглосуточно)	_	+
Предоставление доступа к системе регистрации запросов/инцидентов Service Desk	+	+
Предоставление доступа к базе знаний по продуктам Скала^р	+	+
Предоставление обновлений лицензионного ПО Скала^р	+	+
Диагностика, анализ и устранение проблем в работе комплекса Скала^р, включая: • устранение аппаратных неисправностей • техническое сопровождение ПО	+	+
Консультации по работе комплекса Скала^р	+	+
«Защита конфиденциальной информации» (неисправные носители информации не возвращаются Заказчиком)	Опция	Опция
Замена и ремонт оборудования по месту установки	+	+

Услуги	Пакет «9×5»	Пакет «24×7»
Доставка оборудования на замену за счет производителя	+	+
Расширенные параметры обслуживания		+
Времена реагирования и отклика, не более:		
Время регистрации обращений	30 минут, рабочие часы (9×5)	30 минут, круглосуточно (24×7)
Подключение специалиста к решению инцидентов критичного и высокого уровней	В течение 1 рабочего часа (9×5)	В течение 1 часа (24×7)

Примечание к срокам ремонта оборудования

Комплекс **Машина больших данных Скала^р МБД.КХ** архитектурно является устойчивым к выходу из строя отдельных компонентов и даже узлов, поэтому нет необходимости в обеспечении дорогостоящего сервиса срочного восстановления оборудования в течение суток и менее. В комплексе предусмотрено как минимум двойное резервирование основных компонентов, позволяющее сохранять данные и работоспособность даже при выходе из строя нескольких дисков и/или серверов (узлов).

13. ЛИЦЕНЗИРОВАНИЕ ПО В СОСТАВЕ МОДУЛЕЙ

Команда Скала^р активно занимается развитием программных продуктов Машин больших данных Скала^р МБД.8. Направления развития формируются на основе анализа мирового опыта использования систем подобного класса и пожеланий Заказчиков и партнеров. Новые функции реализуются в форме релизов, которые могут выходить несколько раз в год.

Программное обеспечение Arenadata Streaming лицензируется согласно объёму ресурсов в Модуле потоковой обработки или/и Модуля обработки данных, при этом на каждый Модуль выдается единая лицензия.

Программное обеспечение Arenadata Catalog лицензируется по количеству пользователей с правами администратора или модератора.

Программное обеспечение **Скала^р Геном**, **Скала^р Визион** поставляется исключительно в составе **Машин Скала^р** и лицензируется по метрикам комплекса в соответствии с количеством серверных узлов.

13.1 Политика обновления ПО

Команда **Скала^р** активно занимается развитием собственных программных продуктов. Направления развития формируются на основе анализа мирового опыта использования систем подобного класса и пожеланий Заказчиков и партнеров. Новые функции реализуются в форме релизов. Обновления для **Машин**, находящихся в эксплуатации, производятся по согласованию с Заказчиком.

О КОМПАНИИ

Скала^р — модульная платформа для построения высоконагруженной ИТ-инфраструктуры, продукт Группы Rubytech.

Программно-аппаратные комплексы (**Машины**) **Скала^р** выпускаются с 2015 года и представляют широкий технологический стек для построения динамических инфраструктур и инфраструктур управления данными высоконагруженных информационных систем.

Продукты **Скала^р** включены в Реестр промышленной продукции, произведенной на территории Российской Федерации, и в Единый реестр российских программ для ЭВМ и БД. Соответствует критериям доверенности и использованию для объектов критической информационной инфраструктуры (КИИ).

Машины Скала^р являются серийно выпускаемыми преднастроенными комплексами, которые быстро развертываются и вводятся в эксплуатацию. Глубокая интеграция технических средств и программного обеспечения в ПАК **Скала^р** позволяет получить расширенные возможности и функциональность, которые недоступны при использовании отдельных компонентов.

Модульный принцип обеспечивает интеграцию разнородных компонентов ИТ-инфраструктуры в единую платформу предприятий, корпораций и ведомств. Единые поддержка и сервисное обслуживание для всех продуктов линейки **Скала^р** от производителя обеспечивают оперативное разрешение инцидентов на стыке технологий.

Дополнительная информация — на сайте www.skala-r.ru.